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Abstract

Second-order Functional Differential Equations (FDEs) have been
used widely in the significant field of mechanical and control
engineering. However, a little work has been done in the qualitative
theory of such equations compared with those conducting first-order
FDEs. In our study, we focus on two classes of second-order
functional differential equations. The first one is autonomous in
which the delay argument and the coefficients of the equation are
constants whereas the second one is non-autonomous in which the
delay argument and the equation’s coefficients are time-dependent
functions. The stability of the zero solution of both equations is
examined while the existence of local Hopf bifurcations is discussed
only for the autonomous equation. Sufficient conditions for the global
asymptotic stability are established using fixed point theory instead of
the more common used way which is Lyapunov’s direct method.
Moreover, the existence of sequences of local Hopf bifurcations
leading to non-constant periodic solutions are proved for the
autonomous equation under certain conditions by applying Hopf
bifurcation theorem. In the bifurcation analysis, the delay argument
and the coefficients of the terms that include the delay are considered
as bifurcation parameters in separate cases. Some of our theoretical
results in both directions are supported through specific examples and
numerical simulations using MATLAB software which indicate that
the qualitative predictions and the numerical generated solutions are
in good agreement.



